Oxidation of Ferrous Ions by Ozone in Acidic Solutions

Tine Løgager, Jerzy Holcman, Knud Sehested, and Thorvald Pedersen[†]

Section of Chemical Reactivity, Department of Environmental Science and Technology, RISØ National Laboratory, DK-4000 Roskilde, Denmark

Received September 6, 1991

The oxidation of ferrous ions by ozone in acidic solutions of pH 0-2 was studied using a stopped-flow spectrophotometer. The reaction can be characterized as an oxygen atom transfer from O_3 to Fe²⁺. An intermediate product assigned to be the ferryl ion, FeO²⁺, was found and its UV-vis spectrum measured. A reaction mechanism is proposed, which accounts for all our experimental results. Accordingly, the ferryl ion is formed by $Fe^{2+} + O_3$ \rightarrow FeO²⁺ + O₂ with a rate constant $k = (8.2 \pm 0.3) \times 10^5$ M⁻¹ s⁻¹. With an excess of Fe²⁺, the reaction FeO²⁺ + Fe²⁺ $\stackrel{2H^+}{\rightarrow}$ 2Fe³⁺ + H₂O, $k = (1.4 \pm 0.2) \times 10^5$ M⁻¹ s⁻¹, is dominant in the decay of FeO²⁺, thus yielding the stoichiometric ratio $\Delta[O_3]/\Delta[Fe^{2+}] = 0.5$ for $[Fe^{2+}]_0/[O_3]_0 \ge 3$. With an excess of O₃, the decay is governed by the following set of reactions: $FeO^{2+} \rightarrow Fe^{3+} + OH + OH^-$, $k = (1.3 \pm 0.2) \times 10^{-2} s^{-1}$; $FeO^{2+} + OH \rightarrow Fe^{3+}$ + HO₂⁻, $k = (1.0 \pm 0.5) \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$; FeO²⁺ + H₂O₂ \rightarrow Fe³⁺ + HO₂ + OH⁻, $k = (1.0 \pm 0.1) \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$; $FeO^{2+} + HO_2 \rightarrow Fe^{3+} + O_2 + OH^-$, $k = (2.0 \pm 1.0) \times 10^6 M^{-1} s^{-1}$. No evidence could be obtained for the ferryl ion reacting with ozone, $k < 5 \text{ M}^{-1} \text{ s}^{-1}$, or itself, $k < 50 \text{ M}^{-1} \text{ s}^{-1}$.

Introduction

In the aqueous phase of the atmosphere (aerosols, clouds, fog, etc.), where iron, 1 acids, and ozone are simultaneously present, 2-5 the oxidation of Fe^{2+} by O₃ is very important as an ozone sink. This reaction has been extensively studied⁶⁻¹¹ as a major reaction in waste water ozonation and in analytical chemistry for quantitative determination of O_3 .

In spite of the effort put into its study, discrepancies as to mechanism, stoichiometry, and rate constant of the reaction are still unresolved. The second-order rate constant of ferrous ion oxidation by ozone was found to exceed the 5×10^5 M⁻¹ s⁻¹ value of Hoigné et al.,⁹ who in their paper support a single electron transfer mechanism, producing the OH radical directly. In a later study,¹² they proved that no OH radicals were formed directly and they suggested a ferryl ion formation as an intermediate. On the other hand, Conocchioli et al.⁶ give a rate constant of $1.7 \times$ 10⁵ M⁻¹ s⁻¹ and postulate the formation of 40% ferryl ion and 60% OH radical. Tyupalo et al.^{7,8} support the OH-producing mechanism and a constant stoichiometric ratio, $\Delta O_3 / \Delta F e^{3+}$ = 0.5, when $[Fe^{2+}]_0 \gg [O_3]_0$. This mechanism and stoichiometry is also supported by Hart et al.¹³ Under conditions of excess Fe²⁺, Yang and Neely¹⁰ get a time-dependent $\Delta O_3/\Delta Fe^{3+}$ stoichiometric ratio ranging from 0.54 to 0.4 (15 min), depending on a pH from 1.3 to 5.4 and on the initial Fe^{2+} and O_3

[†] Present address: Institute of Chemistry, University of Copenhagen, DK 2100 Copenhagen Ø, Denmark.

- (1) Behra, P.; Sigg, L. Nature 1990, 344, 419.
- (2) Graedel, T. E.; Mandich, M. L.; Weschler, C. J. J. Geophys. Res. 1986, 91, 5205.
- (3) Jacob, D. J. J. Geophys. Res. 1986, 91, 9807.
- (4) Jacob, D. J.; Gottlieb, E. W.; Prather, M. J. J. Geophys. Res. 1989, 94, 12975
- (5) Pandis, S. N.; Seinfeld, J. H. J. Geophys. Res. 1989, 94, 1105.
- (6) Conocchioli, T. J.; Hamilton, E. J., Jr.; Sutin, N. J. Am. Chem. Soc. 1965. 87. 926
- (7) Tyupalo, N. F. Dokl. Chem. 1981, 256, 894. [Translated from: Dokl. Akad. Nauk. SSSR 1981, 256, 894.]
 (8) Tyupalo, N. F.; Dneprovskii, Yu. A. Russ. J. Inorg. Chem. 1981, 26, 357. [Translated from: Z. Neorg. Khim. 1981, 26, 664.]
 (9) Hoigné, J.; Bader, H.; Haag, W. R.; Staehelin J. Water Res. 1985, 19, 000
- 993.
- (10) Yang, T. C.; Neely, W. C. Anal. Chem. 1986, 58, 1551.
- (11) Neely, W. C.; Sheu, T. W.; Yang, T. C. Anal. Chim. Acta 1988, 215, 353.
- (12) Nowell, L. H.; Hoigné, J. In Proceedings of 8th World Congress, International Ozone Association; Naef, H. R., Ed.; International Ozone Association: Zurich, 1987; pp E80-E96.
- (13) Hart, E. J.; Sehested, K.; Holcman, J. Anal. Chem. 1983, 55, 46.

concentrations. In a more recent paper,¹¹ however, these authors use the ferrous-ozone system as a means of an indirect analytical determination of O₃ concentration in water, using a stoichiometric ratio of 0.5 at pH 2. Another work,14 proposing the intermediacy of a complex suggested to be the ferryl ion in the oxidation of Fe²⁺ by ozone in acidic solution has come to our attention during the preparation of this manuscript.

Although the ferryl ion intermediate has been proposed in the Fenton reaction, direct OH formation from $H_2O_2 + Fe^{2+}$ seems to be the most generally accepted mechanism,¹⁵⁻¹⁷ especially at low pH.^{18,19} Despite this, the ferryl ion intermediate is commonly proposed in reactions of Fe^{2+} complexes with H_2O_2 , for example nucleotide complexes,20 porphyrin complexes,21-23 and EDTA complexes^{24,25} and in the reaction of H_2O_2 with Fe²⁺ in the presence of organic substrates.²⁶ Furthermore, the kinetic, spectral, and chemical properties of ferryl and ferryl pyrophosphate complexes in alkaline solution have been explored by pulse radiolysis.²⁷⁻²⁹ Thus the existence of the ferryl ion has quite recently become accepted. It has been produced photochemically from an anaerobic mixture of flavin mononucleotide, H₂O₂, and an iron chelate³⁰ and synthetically as ferryl porphyrin complexes.³¹

The purpose of this study is to elucidate the mechanism of the oxidation of Fe²⁺ by ozone in acidic solution, determine the rate

- (14) Falcke, H. Kernforschungszent. Karlsruhe 1990; Chem. Abstr. 1991, 114.
- (15) Levason, W.; McAuliffe, C. A. Cord. Chem. Rev. 1974, 12, 151.
- (16) Groves, J. T. In Metal Ion Activation of Dioxygen; Spiro, T. G., Ed.; John Wiley & Sons: New York, 1980; p 147.
- Walling, C. In Oxidases and Related Redox Systems; King, T. E., (17)Mason, H. S., Morrison, M., Eds.; Pergamon: Oxford, England, 1982; pp 85-97.
 (18) Walling, C. Acc. Chem. Res. 1975, 8, 125.
 (19) Koppenol, W. H.; Liebman, J. F. J. Phys. Chem. 1984, 88, 99.
 (20) Rush, J. D.; Maskos, Z.; Koppenol, W. H. FEBS Lett. 1990, 261, 121.
 (21) Rush, J. D.; Chem. Soc.

- (21) Felton, R. H.; Owen, G. S.; Dolphin, D.; Fajer, J. J. Am. Chem. Soc. 1971, 93, 6332.
- (22) Groves, J. T.; Haushalter, R. C.; Nakamura, T. E. N.; Evans, B. J. J. Am. Chem. Soc. 1981, 103, 2884.
 (23) Traylor, T. G.; Xu, F. J. Am. Chem. Soc. 1987, 109, 6201.
- (24) Balasubramanian, P. N.; Bruice, T. C. J. Am. Chem. Soc. 1986, 108, 5495.
- Rush, J. D.; Koppenol, W. H. J. Inorg. Biochem. 1987, 29, 199. Sugimoto, H.; Sawyer, D. T. J. Am. Chem. Soc. 1984, 106, 4283. (26)
- (27)
- Rush, J. D.; Bielski, B. H. J. J. Am. Chem. Soc. 1986, 108, 523. Melton, J. D.; Bielski, B. H. J. Radiat. Phys. Chem. 1990, 36, 725. (28)
- (29)
- (30)
- Bielski, H. J. Free Radical Res. Commun. 1991, 12–13, 469.
 Prolla, T. A.; Mehlhorn, R. J. Free Radical Res. Commun. 1990, 9, 135.
 Balch, A. L.; La Mar, G. N.; Latos-Grazynski, L.; Renner, M. W.;
 Thanabal, V. J. Am. Chem. Soc. 1985, 107, 3003. (31)

0020-1669/92/1331-3523\$03.00/0 © 1992 American Chemical Society constants, and investigate the possible intermediacy of a ferrousozone complex likely to be the ferryl ion (the ferryl ion has a formal oxidation state of $+4^{32}$).

Experimental Section

Materials. All solutions were prepared using triply-distilled water. $(NH_4)_2Fe(SO_4)_2$ (maximum 0.002% Mn), $NH_4Fe(SO_4)_2$, and H_2SO_4 (Merck pa) and HClO₄ doubly vacuum distilled from Vycor and Fe-(ClO₄)₂ (Frederik Smith Chem. Co) were used as supplied. Concentrated gaseous ozone was prepared as described elsewhere.^{13,33} An aqueous stock solution in 0.01, 0.1, or 1 M HClO₄ or 0.4 M H₂SO₄ was prepared daily by transferring about 20 mL of ozone gas into a 100-mL syringe containing 70 mL of acid, shaking, and expelling the excess gas. This procedure gave ozone stock concentrations of about 4×10^{-3} M. To avoid photochemical decomposition, handling of O3 solutions was carried out in a dimly lit room. The 1 M HClO₄ and 0.4 M H₂SO₄ ozone stock solutions remain stable throughout a working day, while 0.1 and 0.01 M HClO₄ solutions are somewhat less stable. Unless otherwise specified, $(NH_4)_2Fe(SO_4)_2$ was used as the source of Fe^{2+} .

Apparatus. A Hi-Tech SF-51 stopped-flow spectrophotometer (SFS) with UV and vis lamps was used. This instrument has a dead (mixing) time of about 1 ms, which enables us to measure rate constants in the order of 700 s⁻¹. Either 0.2- or 1-cm quartz cells were thermostated at 25.0 ± 0.1 °C. The data were recorded and analyzed on an on-line Apple He computer with Hi-Tech software. The reaction was studied in the UV and visible wavelength range, 200-500 nm, in the time range 0.001-400 s. Prior to every experiment, the ozone drive-syringe was refilled with fresh solution from the reservoir-syringe. The thermal decomposition of O₃ in the stopped-flow cell $((1-2) \times 10^{-4} \text{ M O}_3 \text{ in } 1 \text{ M HClO}_4)$ did not exceed 3% over a 400-s time span and was thus negligible.

An alternative "rapid-mixing device" (RMD) was used to measure O2 formation during the ferrous-ozone reaction and to determine H2O2-FeO2+ stoichiometry. It consists of two 100-mL glass syringes that are driven simultaneously by a motor. Their content is mixed through a Y-joint. A mixing time of about 0.5 s was estimated for the RMD. The flow mixing-rate could be varied in the 0.2–10 mL s⁻¹ range, but the value typically used was 2.4 mL s⁻¹. A constant-volume mixing ratio of 1:1 was established in both stopped-flow techniques.

O₂ Measurements. Oxygen was measured by an oxygen electrode, a TCM 1 TC Oxygen Monitor from the Radiometer Corp. The electrode was coupled to the RMD through a Teflon flow cell. This setup was calibrated using O2-free and O2-saturated solutions. Although this type of oxygen monitor is not designed for fast reaction kinetics, we found its 95% response time to be 5 s, which was satisfactory for our purposes. By using argon saturated solutions of 4.0 \times 10⁻⁴ M Fe²⁺ and 3.82 \times 10⁻⁴ M O_3 and mixing them in the RMD, the O_2 content of the reaction mixture was monitored starting about 2 s after mixing. The O₂ content of each reactant solution was then measured separately and the O₂ generated during the reaction obtained as the difference

O3 Measurements. Ozone concentration was measured spectrophotometrically at its maximum absorption wavelength, $\lambda_{max} = 260$ nm, using an extinction coefficient of $\epsilon_{260} = 3300 \text{ M}^{-1} \text{ cm}^{-1}$.¹³ When ozone was measured for stoichiometric determinations, the absorbance of the reaction mixture (effluent in a 10-mL syringe) was measured at selected time intervals after mixing (30, 120, 400, or after 600 s). Then the effluent was bubbled, at selected times after mixing, with Ar gas at a flow rate of about 14 mL s⁻¹ for 5 min to flush excess O₃ from the effluent.³⁴ The Ar-gas stream was passed through a washing bottle containing 1 M HClO₄ before entering the effluent. This bubbling procedure proved effective for removing excess O₃ at least within the detection limit of 0.5 $\times 10^{-6}$ M O₃. The absorbance of the effluent after flushing was measured, and the difference between the absorbance before and after yielded the amount of unreacted O3 at the selected time after mixing.

Fe³⁺ Measurements. Fe³⁺ concentration was determined spectrophotometrically at $\lambda_{max} = 238$ nm using $\epsilon_{238} = 4230$ M⁻¹ cm⁻¹.³⁵ At 260 nm, where $[O_3]$ is monitored, the extinction coefficient of Fe³⁺ is ϵ (Fe³⁺)₂₆₀ $= 2950 \text{ M}^{-1} \text{ cm}^{-1}.^{35}$

- (32) Rush, J. D.; Maskos, Z.; Koppenol, W. H. Methods Enzymol. 1990, 186, 148.
- (33) Schested, K.; Holcman, J.; Bjergbakke, E.; Hart, E. J. J. Phys. Chem. 1984, 88, 4144. (34) Sehested, K.; Corfitzen, H.; Holcman, J.; Hart, E. J. J. Phys. Chem.
- Phys. 1969, 51, 3159.

min and measuring the absorbance at 238 nm. After subtraction of the absorbance of the blank solution, 5×10^{-3} M Fe²⁺, the concentration of Fe³⁺ was calculated. The excess Fe³⁺ concentration thus measured divided by half the Fe³⁺ concentration measured in the argon-flushed effluent equals the concentration of H_2O_2 in the effluent.

 H_2O_2 Measurements. The concentration of hydrogen peroxide was

determined by mixing equal volumes of the argon-flushed effluent with

Computer Simulations. All our experiments were modeled using Chemsimul,³⁷ a program developed at RISØ for numerical simulation of chemical reaction systems, and its input files.³⁸ This ensures a modeling based on an exhaustive set of radical reactions in water, in addition to the reactions describing the subject of interest, in this case the ferrousozone system. Thus a total of more than 50 water radical reactions and their rate constants³⁸ were included in the model, regardless of their influence on the subject studied. In this way three rate constants of the ferrous-ozone system and the spectrum of FeO2+ have been determined (see below).

Results

Experiments with $[O_3]_0 \ge [Fe^{2+}]_0$. Studying the ferrous-ozone system when $[O_3]_0 \ge [Fe^{2+}]_0$ by stopped-flow at 260 nm (ϵ - $(O_3)_{260} = 3300 \text{ M}^{-1} \text{ cm}^{-1}$ and $\epsilon(\text{Fe}^{3+})_{260} = 2950 \text{ M}^{-1} \text{ cm}^{-1}$ 35,36) allowed observation of two distinct kinetic steps in the time range 0.001-400 s (Figure 1A,B).

The rapid decay step (time span 1-50 ms; Figure 1A) is O₃ and Fe²⁺ concentration dependent and of first-order, while the slower buildup step (time span \simeq 50 ms-400 s; Figure 1B) is mixed-order and independent of O3 in the concentration range $(0.05-0.4) \times 10^{-3}$ M. At 320 nm, where the extinction coefficients of Fe³⁺ and O₃ are practically zero (Figure 7), a kinetically equivalent but reversed picture is observed, a fast buildup followed by a slow decay (Figure 1C,D). The presence of these two distinct steps is evidence for the formation of an intermediate, prior to the formation of ferric ion as the final product. The first step may be ascribed to reaction 1, and the 0.05-400-s buildup step

$$Fe^{2+} + O_3 \rightarrow FeO_3^{2+}$$
 (Fe(IV)) (1)

to Fe^{3+} ion formation is a result of the decay of the intermediate species. The spectrum resulting from initial conditions of $[O_3]_0$ = $[Fe^{2+}]_0$ is exclusively due to the ferric ion, while, in the case of initial ozone surplus, $[O_3]_0 > [Fe^{2+}]_0$, it is composed of the ferric ion and ozone spectra. Assuming the stoichiometry of one intermediate species formed per ozone used, the change in absorbance (Figure 1A) yields a roughly estimated extinction coefficient $\epsilon_{260} \approx 250 \text{ M}^{-1} \text{ cm}^{-1}$ at 260 nm for the intermediate species. The intermediate species is formally iron in the oxidation state +4, Fe(IV), as the ferrous ion has been oxidized by two electron equiv.

From absorbance changes at 230, 260, and >305 nm, a rate constant $k_1 = (8.2 \pm 0.3) \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$ was determined under pseudo-first-order conditions with excess O_3 , $[O_3]_0 = (0.35-4.0)$ $\times 10^{-4}$ M, and $[Fe^{2+}]_0 = (0.2-1.0) \times 10^{-4}$ M at pH 0-2 in HClO₄ and in 0.4 M H_2SO_4 (Figure 2). This value is slightly higher than the lower value ($5 \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$), proposed by Hoigné,⁹ but not in agreement with the values found by Conocchioli⁶ and by Falcke¹⁴ ($1.7 \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$ and $2.3 \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$, respectively). Within the uncertainty, a constant value of k_1 was obtained in the pH region 0-2 in HClO₄ and 0.4 M H₂SO₄. The formation of Fe³⁺ within the time span 0.05-400 s (Figure 1B) was independent of ozone concentration ((0.05–0.4) \times 10⁻³ M O₃), and an upper limit of 5 M^{-1} s⁻¹ can be estimated for the rate constant of any reaction between ozone and the intermediate species.

 O_2 Formation for $[O_3]_0 \ge [Fe^{2+}]_0$. Measurements with the oxygen electrode yield the ratio of oxygen produced 5 s after

- (35) Schested, K.; Bjergbakke, E.; Rasmussen, O. L.; Fricke, H. J. Chem.
- (36) Sehested, K.; Rasmussen, O. O.; Fricke, H. J. Phys. Chem. 1968, 72, 626.

⁽³⁷⁾ Rasmussen, O. L.; Bjergbakke, E. Risø-R-395; Risø National Laboratory: Roskilde, Denmark, 1984

Bjergbakke, E.; Sehested, K.; Rasmussen, O. L.; Christensen, H. Risø-M-2430; Risø National Laboratory: Roskilde, Denmark, 1984.

Figure 1. Characteristic kinetic traces at selected wavelengths with arbitrary absorbance (OD) scale: (A) $[Fe^{2+}]_0 = 5.0 \times 10^{-5} \text{ M}$, $[O_3]_0 = 1.26 \times 10^{-4} \text{ M}$, 260 nm; (B) $[Fe^{2+}]_0 = 1.0 \times 10^{-4} \text{ M}$, $[O_3]_0 = 1.0 \times 10^{-4} \text{ M}$, 260 nm; (C, D) $[Fe^{2+}]_0 = 1.1 \times 10^{-4} \text{ M}$, $[O_3]_0 = 1.3 \times 10^{-4} \text{ M}$, 320 nm; (E) $[Fe^{2+}]_0 = 1.0 \times 10^{-4} \text{ M}$, $[O_3]_0 = 6.0 \times 10^{-5} \text{ M}$, 260 nm.

mixing equal concentrations of O_3 and Fe^{2+} per initial Fe^{2+} concentration, $[O_2]/[Fe^{2+}]_0 = 0.8-0.9$, which is close to unity. Due to the relatively fast reaction of the intermediate species with Fe^{2+} (reaction 3, below), about 30% of the initial Fe^{2+} has been converted to Fe^{3+} , 5 s after mixing. This would yield $[O_2]/$

Figure 2. Apparent first-order rate constant k_2 versus $[O_3]_0$, where $[O_3]_0$, $\gg [Fe^{2+}]_0$, monitored as a decay at 260 nm ((*) 1 M, (\heartsuit) 0.1 M, (\square) 0.01 M HClO₄; (+) 0.4 M H₂SO₄) and as FeO²⁺ buildup at 230 ((X) 1 M HClO₄, (V) 0.4 M H₂SO₄), at 305 nm ((\triangle) 1 M, (\heartsuit) 0.1 M HClO₄; (\triangle) 0.4 M, (\blacklozenge) 0.04 M H₂SO₄) and at 335 nm ((\diamondsuit) 1 M HClO₄). The solid line is the linear regression fit to the points, which gives $k_2 = (8.2 \pm 0.3) \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$.

 $[Fe^{2+}]_0 = 0.3$, if the reacted FeO_3^{2+} is assumed to be the only oxygen source. Therefore, we choose to designate the intermediate species in the reaction of ferrous ion with ozone, FeO^{2+} (reaction 2), rather than FeO_3^{2+} (reaction 1), and thus k_1 is replaced by k_2 .

$$Fe^{2+} + O_3 \rightarrow FeO^{2+} + O_2 \tag{2}$$

Experiments with $[Fe^{2+}]_0 \ge [O_3]_0$. With a small excess of Fe^{2+} , e.g. $[Fe^{2+}]_0/[O_3]_0 \simeq 1.2$, an additional buildup with time span 50-600 ms becomes evident (Figure 1E) between the fast decay and the slow buildup steps (Figure 1A,B). This additional buildup becomes more prominent when the initial ratio $[Fe^{2+}]_0/[O_3]_0$ is increased. At $[Fe^{2+}]_0/[O_3]_0 > 3$ it overshadows both the fast decay step and the slow buildup shown in Figure 1A,B, respectively, so that only an $[Fe^{2+}]$ -dependent fast buildup measured at 260 nm, in the time range 5-100 ms, is observed. This buildup is ascribed to the reaction of the intermediate with Fe^{2+} :

$$FeO^{2+} + Fe^{2+} \xrightarrow{2H^+} 2Fe^{3+} + H_2O$$
 (3)

The rate constant for reaction 3, $k_3 = (1.4 \pm 0.2) \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$, was measured from the pseudo-first-order buildup of Fe³⁺ (Figure 1E) in HClO₄ solutions of pH 0–2 ($\lambda = 230-260 \text{ nm}$, [Fe²⁺]₀ = (0.05–5.0) × 10⁻³ M, and [O₃]₀ = (0.002–0.04) × 10⁻³ M; Figure 3).

As seen in Figure 3, the rate constant of reaction 3 in HClO₄ has a higher uncertainty at $0 \le pH \le 2$ than at pH = 0. A possible explanation for the deviations might be that the hydrated form of Fe³⁺, FeOH²⁺, of which 10% is present at $pH = 2,^{39,40}$ may have a small influence on the value of the absorbance 400-600 s after mixing (reaction has gone to completion) used to calculate the first-order rate constant.

FeOFe⁴⁺ also called Fe(OH)₂Fe⁴⁺ could be considered as an intermediate in reaction 3. This species is reported to have a broad absorption band in the UV-vis range ($\epsilon_{335} = 3000 \text{ M}^{-1}$

⁽³⁹⁾ Singley, J. E.; Sullivan, J. H., Jr. J. Am. Wat. Works, Ass. 1969, 191.
(40) Faust, B. C.; Hoigné, J. Atmos. Environ. 1990, 24A, 79.

Figure 3. Apparent first-order rate constant k_3 versus $[Fe^{2+}]_0$, where $[Fe^{2+}]_0 \gg [O_3]_0$, monitored as a buildup of Fe^{3+} at 230 nm ((×) 0.4 M H₂SO₄) and at 260 nm ((∇) 1 M, (\Box) 0.1 M, (Δ) 0.01 M HClO₄, (+) 0.4 M H₂SO₄, and (∇) 1 M HClO₄ using Fe(ClO₄)₂). The lines are the linear regression fits to the HClO₄ and H₂SO₄ experiments, giving $k_3 = (1.4 \pm 0.2) \times 10^5 \,\text{M}^{-1} \,\text{s}^{-1}$ and $k_3 = (4.6 \pm 0.5) \times 10^5 \,\text{M}^{-1} \,\text{s}^{-1}$, respectively.

 cm^{-1} 6 or $\epsilon_{335} = 3400 M^{-1} cm^{-1} 4^{-1}$ in 0.1-3.0 M perchloric acid. We do not observe any substantial transient absorption at 335 nm in our system when $[Fe^{2+}]_0 \gg [O_3]_0$. However, when we studied the system under the same conditions as Conocchioli et al.⁶ (λ = 335 nm, 5 × 10⁻² M Fe²⁺, and 7.8 × 10⁻⁵ M O₃ in 1 M HClO₄) using $Fe(ClO_4)_2$ as our Fe^{2+} source, we get a transient absorption equal to 2.2×10^{-5} M FeOFe⁴⁺ (using $\epsilon_{335} = 3000$ M⁻¹ cm^{-1}), corresponding to 30% of the FeO²⁺. This transient has a decay rate close to 2.5 s^{-1} , in agreement with the dissociation rate for FeOFe⁴⁺; $k = (k_1 + k_2 \times [H^+])$, where k_1 and k_2 equal 0.42 s⁻¹ and 3.3 M⁻¹ s^{-1 42} or 0.35 s⁻¹ and 3.5 M⁻¹ s^{-1,6,41,43} respectively. A possible explanation why we do not observe this transient when using $(NH_4)_2$ Fe $(SO_4)_2$ is that as FeOFe⁴⁺ decays, a ferric sulfate complex builds up, leaving practically no absorption difference (only 0.004) during the FeOFe4+ decay time but leaving a permanent absorption due to some FeSO₄⁺ (if using $\epsilon_{335} \approx 1100$ M^{-1} cm⁻¹, it corresponds to 66% of the FeO²⁺ yield in 5 × 10⁻² M Fe²⁺). The same experiment was carried out using only 1.0 \times 10⁻³ M (NH₄)₂Fe(SO₄)₂ (maximum 0.002% Mn) and 6.0 \times 10^{-5} M O₃ in 1 M HClO₄; here the transient was observed although only by 17% of the FeO²⁺ yield, and practically no permanent absorption due to the sulfate complex was seen. By comparison an experiment using 1.0×10^{-3} M Fe(ClO₄)₂ solution and otherwise identical conditions yielded 30% FeOFe4+. Thus, we observe a transient at 335 nm identical to what Conocchioli et al. observe (although with a lower yield) when we reproduce their experimental conditions, but when we use $(NH_4)_2Fe(SO_4)_2$, the formation of the dimer is less pronounced and in large Fe²⁺ concentrations becomes overshadowed by the ferric sulfate complex. The formation of the dimer FeOFe4+ occurs only under conditions of excess Fe²⁺ concentrations and thus can only have an influence on the determination of the rate of reaction 3. Since both $Fe(ClO_4)_2$ and $(NH_4)_2Fe(SO_4)_2$ give the same rate constant in HClO₄ (as opposed to the rate in H_2SO_4 ; see below), the influence is negligible. Falcke¹⁴ did observe an absorbance at 335 nm but with a much lower extinction. He argued that no substantial amount of the dimer was formed.

Our experiments in 0.4 M H₂SO₄ ($k_3 = (4.6 \pm 0.5) \times 10^5$ M⁻¹; s⁻¹; Figure 3) yield a distinctly higher rate constant than in HClO₄. This higher value may be due to a ferryl sulfate complex in analogy with the ferric sulfate complex formation (Fe²⁺ does not form a complex with the sulfate ion).^{13,44}

When $[Fe^{2+}]_0/[O_3]_0 \ge 3$, the stoichiometric ratio $\Delta[O_3]/\Delta$ -[Fe³⁺] = 0.50 ± 0.02 was determined (400-600 s after mixing). This ratio is consistent with reactions 2 and 3 and is in accordance with the stoichiometry reported in the literature,^{7,8,11,13} except by Yang et al.,¹⁰ who reported a time-dependent ratio which remains constant at $\Delta[O_3]/\Delta[Fe^{3+}] = 0.4$ after 15 min, a finding which we are unable to reproduce.

Decay of the Intermediate FeO²⁺ Species. The decay of FeO²⁺ was monitored both in the 240–280-nm range (as a buildup of Fe³⁺) and in the 200–230- and 280–350-nm range (as a decay of FeO²⁺). Although the absorption change is much lower in the 280–350-nm range than in the 240–280-nm range, it is still more convenient to observe the intermediate species, FeO²⁺ in the former, higher wavelength region, where it is the predominating absorbing species. To get the optimal conditions for monitoring the decay reaction of FeO²⁺ (i.e. the longest half-life), it is convenient to start with equal reactant concentrations. The reaction expected to occur under these conditions, after the rapid formation of the intermediate, would be the FeO²⁺ self-reaction, in analogy with that of the ferryl pyrophosphate complex:²⁸

$$2\text{FeO}^{2+} \rightarrow (\text{FeOOFe}^{4+}) \xrightarrow{\text{H}_2\text{O}} 2\text{Fe}^{3+} + \text{OH}^- + \text{HO}_2^- \quad (4)$$

The intermediate complex FeOOFe⁴⁺ assumed, if formed at all, is rapidly hydrolyzed to Fe³⁺ and hydrogen peroxide.²⁸ However, the buildup kinetics (240–280 nm) and the decay kinetics (200– 230 and 280–350 nm) observed are both of mixed order, but fairly close to first order, similar to the behavior of the ferryl complex in alkaline solution,²⁹ but with a different rate constant. Increasing the starting concentrations of both reactants ([Fe²⁺]₀ = [O₃]₀ = (0.25–2.0) × 10⁻⁴ M in 1 M HClO₄) did not increase the rate of Fe³⁺ formation or the rate of decay of FeO²⁺. The failure to observe any second-order kinetics suggests an upper limit of 50 M⁻¹ s⁻¹ for the rate constant of reaction 4.

As mentioned above, the decay of FeO²⁺ is not influenced by a surplus of ozone. The stoichiometric ratio $\Delta[O_3]/\Delta[Fe^{3+}]$, however, increases with increasing O₃ concentration at fixed Fe²⁺ concentration. At equal amounts of O₃ and Fe³⁺, all the ozone is consumed and all Fe²⁺ is oxidized to Fe³⁺. When the initial ratio $[O_3]_0/[Fe^{2+}]_0$ increases, $\Delta[O_3]/\Delta[Fe^{3+}]$, as measured 30– 400 s after mixing, also increases (Figure 4). An increase to a stoichiometric ratio of about 1.5 is obtained when $[O_3]_0/[Fe^{2+}]_0$ increases from 0.5 to about 2–3. A further increase to a ratio of about 2.5 is obtained when the $[O_3]_0/[Fe^{2+}]_0$ ratio is increased further, from 3 to 13–14. The enhancement of O₃ destruction reflected by these ratios indicates a slow chain decomposition of O₃ caused by radicals (OH and/or HO₂), formed during the decay of FeO²⁺.

As a consequence of this slow chain decomposition of ozone, the value of the stoichiometric ratio, $\Delta[O_3]/\Delta[Fe^{2+}]$, should depend on the time elapsed between mixing and stopping the reaction by expelling O₃ with argon. Indeed, stoichiometric ratios at different initial ratios $[O_3]_0/[Fe^{2+}]_0$ consistently increase with time elapsed (30, 120, 400, and 600 s; Table I).

- (44) Jayson, G. G.; Parsons, B. J.; Swallow, A. J. Int. J. Radiat. Phys. Chem. 1971, 3, 345.
- (45) Neta, P.; Huie, R. E.; Ross, A. B. J. Phys. Chem. Ref. Data 1988, 17, 1084.
 (46) Sehested, K.; Holcman, J.; Bjergbakke, E.; Hart, E. J. J. Phys. Chem.
- **1984**, *88*, 269. (47) Bühler, R. E.; Staehelin, J.; Hoigné, J. J. Phys. Chem. **1984**, 88, 2560.
- (48) Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. J. Phys. Chem. Ref. Data 1988, 17.
- (49) Rush, J. D.; Bielski, B. H. J. J. Phys. Chem. 1985, 89, 5062.
- (50) Schested, K.; Holcman, J.; Hart, E. J. J. Phys. Chem. 1983, 87, 1951.
- (41) Sommer, B. A.; Margerum, D. W. Inorg. Chem. 1970, 9, 2517.
 (42) Po, H. N.; Sutin, N. Inorg. Chem. 1971, 10, 431.
- (43) Lutz, B.; Wendt, H. Ber. Bunsen-Ges Phys. Chem. 1970, 74, 372.
- (51) Sehested, K.; Corfitzen, H.; Holcman, J.; Fischer, C. H.; Hart, E. J. Environ. Sci. Technol. 1991, 25, 1589.

Figure 4. Stoichiometric ratios of ozone used per ferric ion produced, $\Delta[O_3]/\Delta[Fe^{3+}]$, as a function of the ratio of initial concentrations of ozone and ferrous ion, $[O_3]_0/[Fe^{2+}]_0$. Points are experimental results in 1 M HClO₄ obtained 120–160 (\diamond) and 300–400 (∇) s after mixing and in 0.01 M HClO₄ 400 (\Box) s after mixing. The solid line is a fit to the points found by modeling the conditions according to the proposed mechanism.

Reaction of H₂O₂. H₂O₂ is known to be an intermediate which is formed and destroyed during the decay of Fe(IV) in alkaline pyrophosphate solutions.^{28,29} There is a definite possibility that H₂O₂ is an intermediate in the ferrous-ozone system, although no H₂O₂ has been found as end product in our stopped-flow experiments. Therefore, it was of interest to study the reaction of FeO²⁺ with hydrogen peroxide (reaction 5). Having produced

$$FeO^{2+} + H_2O_2 \rightarrow Fe^{3+} + HO_2 + OH^-$$
(5)

 HO_2 in reaction 5, we may postulate that it will react with FeO²⁺ as well according to reaction 6. To study this possibility, a solution

$$FeO^{2+} + HO_{2} \rightarrow Fe^{3+} + O_{2} + OH^{-}$$
(6)

containing both hydrogen peroxide and ozone was mixed with a Fe²⁺ solution. The concentration of O₃ in the O₃/H₂O₂ reservoir solution was measured just prior to and after each experiment in order to monitor the O₃ degradation caused by H₂O₂. This degradation was found to be negligible in accordance with the low rate constant known for reaction 7, $k_7 \leq 10^{-2}$ M⁻¹ s⁻¹.^{34,35} With a half-life of about 600 s, reaction 7 can have only a negligible

$$O_3 + H_2O_2 \rightarrow HO_2 + OH + O_2 \tag{7}$$

effect in our experiments of time span 5 s. Concentrations of $[O_3]_0 = (5-9) \times 10^{-5}$ M, $[H_2O_2]_0 = (0.5-1.0) \times 10^{-5}$ M, and $[Fe^{2+}]_0 = 5 \times 10^{-5}$ M ensure an immediate production of FeO²⁺ within the first few milliseconds, which can then in turn react with H₂O₂. Thus, any reaction between Fe²⁺ and H₂O₂ ($k \le 50$ M⁻¹ s⁻¹) can be ruled out. From the decay monitored at 320 nm, where the dominant absorbing species is FeO²⁺, a rate constant was determined, $k_5 = (2.0 \pm 0.2) \times 10^4$ M⁻¹ s⁻¹ (Figure 5). This rate constant may have to be divided by 2 if reaction 6 proceeds sufficiently fast (see Discussion).

A set of experiments devised to study the H_2O_2 -FeO²⁺ reaction were also performed. By means of the RMD a volume of solution containing FeO²⁺ and Fe³⁺ was injected into a stirred equal volume of 5.1×10^{-5} M H₂O₂ solution. Equal volumes of 2.3×10^{-5} M O₃ and 2.6×10^{-5} M Fe²⁺ solutions were used in the RMD syringes. To ensure total conversion of Fe²⁺ into FeO²⁺ and Fe³⁺, the flow rate on the RMD was chosen to assure a contact time of 0.5 s before reaching the H₂O₂ solution. The resulting solution was then analyzed for Fe³⁺ produced and H₂O₂ consumed. The results thus found give Δ [H₂O₂]/[Fe²⁺]₀ \approx 0.30. Chemsimul simulations give 0.28 for this ratio. However, when the same experiments are modeled with a 60–40% distribution of reactions 8 and 2, respectively,⁶ the ratio is found to be 0.10. These results sharply

Table I. Values for the Stoichiometric Ratio $\Delta[O_3]/\Delta[Fe^{3+}]$ at 30, 120, 400, and >600 s after Mixing, as a Function of $[O_3]_0/[Fe^{2+}]_0$ in 1 M HClO₄, 0.01 M HClO₄, and 0.4 M H₂SO₄

(

[Fe ²⁺]。	[01]0	[O ₂] ₀ /	$\Delta[O_3]/\Delta[Fe^{3+}]$ seconds after mixing			
M × 10 ⁶)	$(M \times 10^{6})$	$[Fe^{2+}]_0$ init	30	120	400	>600
20	20	1.0	1.0			
51	51	1.0			1.0	
20	31	1.5		1.3		
51	77	1.5			1.1	
20	32	1.6		1.2		
51	79	1.6		1.2		
20	36	1.8		1.5		
107	198	1.8			1.2ª	1.2ª
113	198	1.9			1. 0 ª	1.04
116	248	2.1			1.0ª	1.04
109	255	2.3			1.6ª	1.8ª
52	122	2.4		1.5		
52	126	2.4			1.5	
20	53	2.6		1.5		
25	76	3.0			1.7	
25	76	3.0		1.6 ^b		
100	420	4.2				1.2
55	242	4.4				1.3
25	131	5.2		1.7		
55	297	5.5	1.4ª			1.7ª
55	314	5.7	1.5ª			1.8ª
25	158	6.2			1.9	
50	430	8.7				1.9
25	239	9.6		2.1	3.0	
34	346	10.2				3.4
34	351	10.3	2.0ª			
34	357	10.5	1.5ª			4.7ª
34	357	10.5	1.8ª			4.4ª
20	242	12.1				2.1
25	322	12.9		2.4	2.6	

^a In 0.4 M H₂SO₄. ^b In 0.01 M HClO₄.

Figure 5. Apparent first-order rate constant for $H_2O_2 + FeO^{2+}$, with excess H_2O_2 , monitored as FeO^{2+} decay at 320 nm (\Box) in 1 M HClO₄. The solid line is the linear regression fit to the points, giving $k_5 = (1.0 \ 0.1) \times 10^4 \ M^{-1} \ s^{-1}$ (the slope is divided by two due to reaction 6).

contradict the results of Conocchioli et al.⁶ and Falcke,¹⁴ rendering reaction 8 very unlikely. The modeling shows that the amount of Fe³⁺ formed just after mixing O₃ and Fe²⁺ (0.5 s) is invariant with changes in the mixing time (range 0.2-2.0 s) of the Fe²⁺-O₃ mixture with H₂O₂ solutions. To show that H₂O₂ does not react with end products, a ferrous-ozone mixture was allowed to stand 10 min (to allow the FeO²⁺ to decompose according to the suggested mechanism) before the mixture was added to the H₂O₂ solution. As expected, no H₂O₂ was consumed in this case.

Spectrum of FeO²⁺. To determine the spectrum of FeO^{2+} , the absorbance of a ferrous-ozone mixture ($[O_3]_0 = 1.3 \times 10^{-4} \text{ M}$ and $[Fe^{2+}]_0 = 1.1 \times 10^{-4} \text{ M}$) in the time span 0.001-400 s was modeled according to the proposed mechanism. The time-de-

Figure 6. Computer simulation, based on the proposed mechanism, of the experimental absorbance observed at 250 nm in a mixture of 1.3×10^{-4} M O₃ and 1.1×10^{-4} M Fe²⁺ in 1 M HClO₄ as a function of time (--): (A) time-dependent (0–0.1 s) concentrations of O₃ × 10³ M (--), Fe³⁺ × 10⁴ M (-·-), and FeO²⁺ × 10⁴ M (...); (B) time-dependent (0– 100 s) concentrations of O₃ × 10³ M (--), Fe³⁺ × 10³ M (--), and FeO²⁺ × 10⁴ M (...). These concentrations are used to calculate the extinction coefficients of FeO²⁺. The stoichiometric ratio Δ [O₃]/ Δ [Fe³⁺] is 1.1.

pendent concentrations of O₃, Fe³⁺, FeO²⁺, and the absorbance observed (Figure 6A,B) were calculated for each 10 nm in the λ range 200–350 nm. Since the concentration of FeO²⁺ reaches a plateau about 0.05 s after mixing, the modeled concentrations of O₃ and Fe³⁺ at 0.05 s (Figure 6A) and their respective extinction coefficients at selected wavelengths were used to subtract the O₃ and Fe³⁺ absorptions from the experimentally determined absorbance 0.05 s after mixing. As the extinction coefficients of Fe²⁺ and O₂ are negligible,^{52,53} the remaining absorbance was ascribed to the intermediate species and converted into extinction coefficients by use of the modeled concentration of FeO²⁺ at 0.05 s. The FeO²⁺ spectrum thus obtained has a small broad peak around 300 nm and a continuum which grows in the UV as shown in Figure 7. Our spectrum is similar to that found by Falcke¹⁴ but with lower extinction coefficients.

Discussion

The oxidation of Fe^{2+} by ozone proposed by Hart et al.¹³ and by most of the other previous investigators⁷⁻¹⁰ is initiated by the following reactions:

$$Fe^{2+} + O_3 \rightarrow Fe^{3+} + O_3^{-}$$
 (8)

$$O_3^- + H^+ \rightarrow OH + O_2 \tag{9}$$

Here $k_8 = 1.7 \times 10^5 \text{ M}^{-1} \text{ s}^{-1,6} \ge 5 \times 10^5 \text{ M}^{-1} \text{ s}^{-1,9}$ or $= 2.3 \times 10^5 \text{ M}^{-1} \text{ s}^{-1,14}$ and $k_9 = (5-9) \times 10^{10} \text{ M}^{-1} \text{ s}^{-1,46,47}$ The OH produced in reaction 9 can then in turn react with any excess Fe²⁺ or O₃ available (reactions 10 and 12).

Figure 7. Extinction coefficients of FeO^{2+} found by computer modeling of experimental absorbancies in 1 M HClO₄. For comparison, the spectra of Fe^{3+} , O₃, and H₂O₂ in 1 M HClO₄ are also given.

Conocchioli et al.⁶ and Falcke¹⁴ found that reactions 8 and 9 were only partly in accordance with their results and proposed an intermediate species, Fe(IV), as in reaction 1 or 2. Nowell and Hoigné¹² also suggest such a species based on experiments in which they have shown that OH was not an immediate product of the ferrous-ozone reaction.

If reaction 8 were valid, then we should observe an immediate buildup of Fe³⁺ when mixing equal amounts of ozone and ferrous ion, as the rate of reaction 10, $k_{10} = 3 \times 10^8$ M⁻¹ s⁻¹,⁴⁸ is much

$$Fe^{2+} + OH \rightarrow Fe^{3+} + OH^{-}$$
 (10)

faster than the rate of reaction 2, making the latter ratedetermining. In this case, every O₃ would produce two ferric ions (reaction 12 is negligible since $k = 1.1 \times 10^8 \text{ M}^{-1} \text{ s}^{-1} \text{ s}^{-1}$), which together have a higher total absorption at 260 nm than O₃ alone. Accordingly, an immediate increase in absorbance should be expected at 260 nm. Our experiments show however that this is not the case, as the buildup of Fe³⁺ is delayed by seconds when $[Fe^{2+}]_0 = [O_3]_0$ and the stoichiometric ratio of O₃ used per Fe³⁺ produced is still 1:1. This renders reaction 8 unnecessary and calls for an intermediate species, as in reaction 2.

Although the oxidation of ferrous by ozone may proceed through a simple addition reaction to produce FeO_3^{2+} (reaction 1), our oxygen measurements show immediate release of oxygen roughly corresponding to one O_2 released per O_3 consumed. As the initial step in the mechanism, we therefore propose the formation of an intermediate species designated FeO^{2+} (reaction 2), manifested in the rapid decay in absorbance (240–280 nm) and buildup (200–230 and 290–340 nm). This intermediate is likely to be the ferryl ion, Fe(IV), that may be ascribed one of the following two structures, e.g. $FeO^{2+} \equiv [Fe^{2+}(O) \leftrightarrow Fe^{4+}O^{2-}$ $\leftrightarrow Fe^{3+}(O^{-})]$ or $Fe(OH)_2^{2+}$.

Our rate constant for reaction 2, $k_2 = (8.2 \pm 0.3) \times 10^5 \text{ M}^{-1}$ s^{-1} , is much higher than most previously published values, but it agrees with the lower limit value $k \ge 5 \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$ reported by Hoigné.⁹ Conocchioli et al.⁶ report a rate constant for reaction 2 of $(1.7 \pm 0.4) \times 10^5 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$, which is based on their preliminary results on Fe³⁺ formation and FeOFe⁴⁺ dissociation and therefore is more relevantly compared to our rate constant for reaction 3 in HClO₄, $k_3 = (1.4 \pm 0.2) \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$, which designates the intermediate species reacting with Fe²⁺ forming Fe³⁺. Thus, we find that, looking at the buildup (Figure 1E), reaction 3 will always be rate-determining compared to reaction 2 in the beginning of the reaction, since $k_3[Fe^{2+}] \le k_2[Fe^{2+}]$, and what happens thereafter is dependent on the initial concentration ratio, $[O_3]_0/[Fe^{2+}]_0$. We cannot comment on the product distribution of Fe³⁺/FeOFe⁴⁺ found by Conocchioli et al. as we are unable to reproduce their results at 340 nm.⁶ Falcke¹⁴ has found a value

⁽⁵²⁾ Heidt, L. J.; Johnson, A. M. J. Am. Chem. Soc. 1957, 79, 5587.
(53) Jortner, J.; Stein, G. J. Phys. Chem. 1962, 66, 1264.

for the rate constant, $k_2 = 2.3 \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$; however, it is determined indirectly by computer calculations since the time resolution on his apparatus is too low to observe the fast decay that we attribute to reaction 2, directly.

The intermediate species, FeO²⁺, reacts relatively fast with Fe²⁺ in HClO₄, $k_3 = (1.4 \pm 0.2) \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$, forming Fe³⁺ ions (reaction 3) while maintaining the stoichiometric ratio, Δ [Fe³⁺]/ Δ [O₃] = 2, when [Fe²⁺]₀/[O₃]₀ > 3. Falcke's rate constant, $k_3 = 3.8 \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$,¹⁴ is a factor of 4 times lower than our k_3 in HClO₄. We can offer no explanation for this discrepancy. FeO²⁺ also reacts with H₂O₂, $k_5 = (1.0 \pm 0.1) \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$, under the assumption that reaction 6 proceeds sufficiently fast (see later).

However, the above mentioned reactions are not sufficient to account for the decay of FeO^{2+} when $[O_3]_0/[Fe^{2+}]_0 \ge 1$. Since we have excluded second-order self-reactions of FeO^{2+} and the reaction with surplus ozone in pertinent time scales, we postulate that FeO^{2+} releases an OH radical in a first-order process according to

$$FeO^{2+} \xrightarrow{H_2O} Fe^{3+} + OH + OH^-$$
 (11)

as the only available alternative. This reaction is supported by the fact that when $[O_3]_0/[Fe^{2+}]_0 > 1$, the first-order rate constant determined as decay of FeO^{2+} is constant. OH-radical formation is also indicated by the slow chain decomposition of O_3 , when O_3 is in surplus. The OH radical formed in reaction 11 may thus react with O_3 according to

$$O_3 + OH \rightarrow HO_2 + O_2 \qquad (12)$$

where $k_{12} = (1.1 \pm 0.2) \times 10^8 \text{ M}^{-1} \text{ s}^{-1} \text{ 33}$ or with FeO²⁺ according to

$$FeO^{2+} + OH \rightarrow Fe^{3+} + HO_2^{-}$$
 (13)

When $[O_3]_0$ is close to $[Fe^{2+}]_0$, reaction 11 followed by reaction 13 is dominant, but when $[O_3]_0 \gg [Fe^{2+}]_0$, reaction 12 will interfere and destroy O_3 whereby the stoichiometric ratio increases. Reaction 13 produces HO_2^-/H_2O_2 ($pK_a = 11.7$), and this H_2O_2 may react with FeO^{2+} as shown in reaction 5, probably followed by reaction 6. A competing reaction for HO_2 is reaction 14, $k_{14} \le 10^4 \text{ M}^{-1} \text{ s}^{-1}.^{33}$

$$O_3 + HO_2 \rightarrow OH + 2O_2$$
 (14)

Reactions 12 and 14 explain the observed chain decomposition of O₃ and, thus, the larger stoichiometric ratios observed when O₃ is in surplus. Ferric ions also react with HO₂/O₂⁻. However, the rate constant $k \approx 2.5 \times 10^3$ M⁻¹ s^{-1 49} is so low that this reaction is insignificant in our experiments. Clearly, OH can react with other radicals and H₂O₂, but these reactions are too slow to be significant.

As reaction 11 is the rate-controlling step, k_{11} must be in the order of 10^{-2} s⁻¹, to account for the very slow decay of FeO²⁺ when $[O_3]_0 = [Fe^{2+}]_0$. The rate constants of reactions 6 and 13 are estimated from the results in Figure 4 in the following.

In the first part of the curve, the increase in $\Delta[O_3]/\Delta[Fe^{3+}]$ from 1 to about 1.5 as $[O_3]_0/[Fe^{2+}]_0$ increases from 1 to about 2-3 is consistent with the assumption that all of the OH radicals produced via reaction 11 are scavenged by the excess O_3 , thus producing HO₂ radicals (reaction 12) which in turn react with FeO²⁺ (reaction 6) (k_{14} is probably much lower than k_6 at pH 0). On this basis, $k_{12} \ge 10k_{13}$; i.e., $k_{13} \le 10^7 \text{ M}^{-1} \text{ s}^{-1}$ is estimated.

To determine k_6 , it is necessary to acknowledge that the HO₂ produced in reaction 5 might also attack excess O₃ (reaction 14, $k_{14} \le 10^4 \text{ M}^{-1} \text{ s}^{-1}$ ³³) or react through its dissociation product O₂⁻ (pK_a = 4.8) with a rate constant of $1.5 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$.⁵⁰ The overall rate constant $k_{14}(\text{HO}_2/\text{O}_2^{-})$ at pH 0 is of the order 10⁴ $\text{M}^{-1} \text{ s}^{-1}$.

The increased stoichiometric ratio $\Delta[O_3]/\Delta[Fe^{3+}]$, when $[O_3]_0/[Fe^{2+}]_0 > 2-3$, is rationalized in terms of competition between

 Table II.
 Reactions and Rate Constants Determined by

 Experimental Data and by Modeling of Experimental Data

reacn no.	reacn	rate constant
2	$Fe^{2+} + O_3 \rightarrow FeO^{2+} + O_2$	$(8.2 \pm 0.3) \times 10^5 \mathrm{M}^{-1} \mathrm{s}^{-1}$
3	$\begin{array}{c} FeO^{2+} + Fe^{2+} \xrightarrow{2H^{+}} \\ 2Fe^{3+} + H_2O \end{array}$	$(1.4 \pm 0.2) \times 10^5 \mathrm{M}^{-1} \mathrm{s}^{-1}$
4	$2FeO^{2+} \xrightarrow{H_2O} 2 Fe^{3+} + OH^- + HO^-$	<50 M ⁻¹ s ⁻¹
5	$FeO^{2+} + H_2O_2 \rightarrow Fe^{3+} + HO_2 + OH^{-}$	$(1.0 \pm 0.1) \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$
6	$FeO^{2+} + HO_2 \rightarrow Fe^{3+} + O_2 + OH^{-}$	$(2.0 \pm 1.0) \times 10^{6} \mathrm{M}^{-1} \mathrm{s}^{-1} \mathrm{a}$
11	$FeO^{2+} \xrightarrow{H_2O} Fe^{3+} + OH + OH^-$	$(1.3 \pm 0.2) \times 10^{-2} \mathrm{s}^{-1} a$
13	$\begin{array}{c} FeO^{2+} + OH \rightarrow \\ Fe^{3+} + HO_2^{} \end{array}$	$(1.0 \pm 0.5) \times 10^7 \mathrm{M}^{-1} \mathrm{s}^{-1} \mathrm{a}$

^a From modeling of experimental data.

O₃ and FeO²⁺ for HO₂ radicals (reactions 6 and 14); thus, k_6 must be of the order of 10⁶ M⁻¹ s⁻¹, because its reaction rate should be at least 1 order of magnitude higher than that of reaction 14. Therefore, the rate constant of reaction 5 must be reduced by a stoichiometric factor of 2; i.e., $k_5 = (1.0 \pm 0.1) \times 10^4$ M⁻¹ s⁻¹.

Both OH and HO₂ radicals formed in reactions 5 and 11, respectively, are able to initiate and carry the slow chain destruction of O₃⁵¹ (reactions 12 and 14), even after FeO²⁺ has totally disappeared. Accordingly, the increase in the stoichiometric ratio with time is largest at high $[O_3]_0/[Fe^{2+}]_0$ ratios and practically absent at $[O_3]_0/[Fe^{2+}]_0 \leq 2-3$.

Modeling of the proposed mechanism, reactions 2–7 and 10– 14 (Table II) plus an exhaustive set of water radical reactions,³⁸ yielded the following best-fit values: $k_6 = (2.0 \pm 1.0) \times 10^6 \text{ M}^{-1}$ s^{-1} , $k_{11} = (1.3 \pm 0.2) \times 10^{-2} \text{ s}^{-1}$, and $k_{13} = (1.0 \pm 0.5) \times 10^7 \text{ M}^{-1}$ s^{-1} . The rate of reaction 11 dominates the first part of the decay curve at 340 nm when $[O_3]_0 = [\text{Fe}^{2+}]_0$, and the rate constant of reaction 13 is limited by competition with reaction 12, the chain decomposition of O₃. On the basis of the mechanism derived, computer modeling of all our stopped-flow experiments and the stoichiometric ratios yields good quality fits.

Conclusion

The rate constant found for ferryl ion formation, $(8.2 \pm 0.3) \times 10^5 \, M^{-1} \, s^{-1}$, is in agreement with an oxygen atom transfer from O₃ to Fe²⁺ producing FeO²⁺ and O₂. These findings support the calculations made by Bennett and Warlop,⁵⁴ which suggest that the rate constant should be in the range $(3-9) \times 10^5 \, M^{-1} \, s^{-1}$. The substitution of O₃ on Fe²⁺ takes place somewhat more rapidly than that of NO on Fe²⁺, the latter being $6.2 \times 10^5 \, M^{-1} \, s^{-1}$.⁵⁵ Although a direct single-electron transfer (reaction 8) parallel to FeO²⁺ formation was suggested both with an excess of Fe²⁺ 6 and an excess of O₃,¹⁴ we find no indication for such a transfer reaction. Instead, we propose a composite mechanism which can account for all our experimental data, whether kinetic, stoichiometric, or spectral.

Acknowledgment. We wish to thank the Danish Natural Science Research Council for financial support under Project 11-5982 for the purchase of a Hi-Tech SF-51 stopped-flow spectrophotometer and H. Corfitzen for providing technical guidance. We also thank Dr. E. J. Hart for helpful comments concerning the revision of this paper.

⁽⁵⁴⁾ Bennett, L. E.; Warlop, P. Inorg. Chem. 1990, 29, 1975.